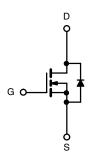

N-Channel 100-V (D-S) 175 °C MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	$r_{DS(on)}\left(\Omega\right)$	I _D (A)		
100	0.024 at V _{GS} = 10 V	47		
	0.027 at V _{GS} = 4.5 V	44		


FEATURES

- TrenchFET® Power MOSFET
- 175 °C Maximum Junction Temperature
- 100 % R_g Tested

Ordering Information: SUM47N10-24L-E3 (Lead (Pb)-free)

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS $T_A =$	= 25 °C, unless othe	rwise noted			
Parameter	Symbol	Limit	Unit		
Drain-Source Voltage		V _{DS}	100	V	
Gate-Source Voltage		V _{GS}	± 20	_ V	
Oastings Dain Oassat (T., 475 00)h	T _C = 25 °C	,	47		
Continuous Drain Current (T _J = 175 °C) ^b	T _C = 125 °C	l _D	27		
Pulsed Drain Current		I _{DM}	70	A	
Continuous Source Current (Diode Conduction)		I _S	47		
Single Pulse Avalanche Current		I _{AS}	40		
Single Pulse Avalanche Energy (Duty Cycle ≤ 1 %)	L = 0.1 mH	E _{AS}	80	mJ	
Maximum Power Dissipation	T _C = 25 °C	PD	136 ^b	w	
Maximum Fower Dissipation	T _A = 25 °C	7 'B [3.75 ^a		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 175	°C	

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Maximum	Unit	
Junction-to-Ambient	PCB Mount	R _{thJA}	40		
Junction-to-Ambient	Free Air	' 'thJA	62.5	°C/W	
Junction-to-Case		R _{thJC}	1.1		

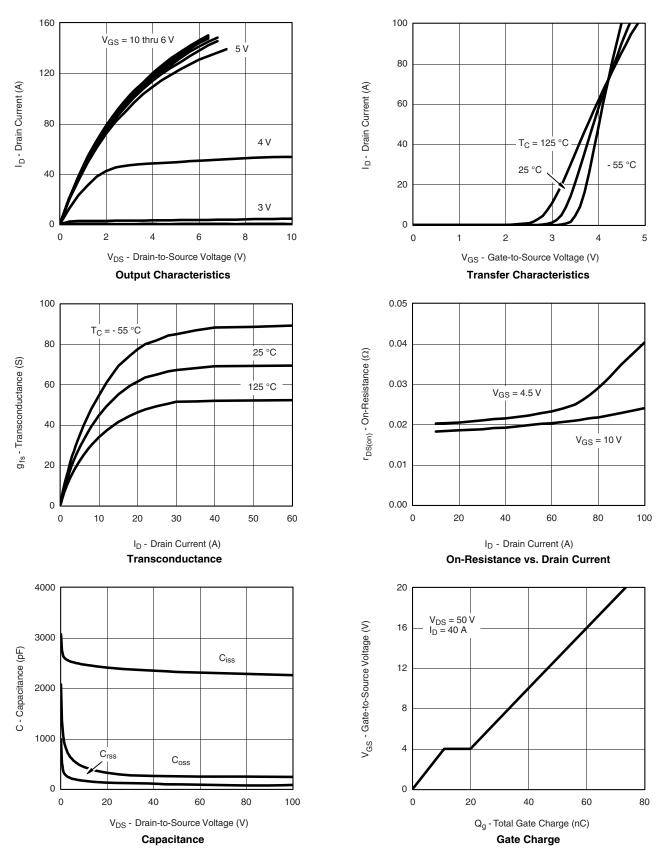
Notes:

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. See SOA curve for voltage derating.

SUM47N10-24L

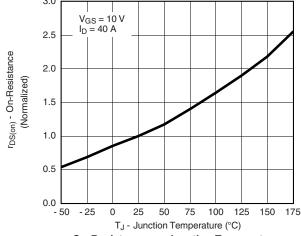
Vishay Siliconix

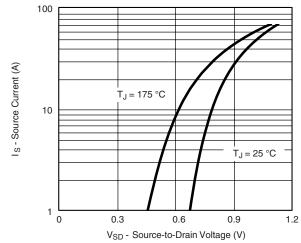
Parameter	Symbol	Test Conditions	Min.	Typ. ^a	Max.	Unit	
Static	•			1			
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	100			V	
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1.0		3.0		
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			± 100	nA	
		V _{DS} = 100 V, V _{GS} = 0 V			1		
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 100 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 125 ^{\circ}\text{C}$			50	μΑ	
-		V _{DS} = 100 V, V _{GS} = 0 V, T _J = 175 °C			250		
On-State Drain Current ^b	I _{D(on)}	V _{DS} = 5 V, V _{GS} = 10 V	70			Α	
Drain-Source On-State Resistance ^b		V _{GS} = 10 V, I _D = 40 A		0.019	0.024	Ω	
	r _{DS(on)}	V _{GS} = 10 V, I _D = 40 A, T _J = 125 °C			0.048		
		V _{GS} = 10 V, I _D = 40 A, T _J = 175 °C			0.060		
		$V_{GS} = 4.5 \text{ V}, I_D = 20 \text{ A}$		0.021	0.027		
Forward Transconductance ^b	9 _{fs}	V _{DS} = 15 V, I _D = 40 A		70		S	
Dynamic ^a							
Input Capacitance	C _{iss}			2400		pF	
Output Capacitance	C _{oss}	V _{GS} = 0 V, V _{DS} = 25 V, F = 1 MHz		290			
Reverse Transfer Capacitance	C _{rss}			120			
Total Gate Charge ^c	Qg			40	60		
Gate-Source Charge ^c	Q _{gs}	$V_{DS} = 50 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 40 \text{ A}$		11		nC	
Gate-Drain Charge ^c	Q _{gd}			9			
Gate Resistance	R _g	f = 1 MHz	1	2.2	3.5	Ω	
Turn-On Delay Time ^c	t _{d(on)}			8	13		
Rise Time ^c	t _r	V_{DD} = 50 V, R_L = 1.25 Ω I_D \cong 47 A, V_{GEN} = 10 V, R_g = 2.5 Ω		40	60	ns	
Turn-Off Delay Time ^c	t _{d(off)}			15	25		
Fall Time ^c	t _f			80	120		
Source-Drain Diode Ratings and Cha	racteristics T	_C = 25 °C					
Pulsed Current	I _{SM}				70	Α	
Diode Forward Voltage ^b	V _{SD}	$I_F = 40 \text{ A}, V_{GS} = 0 \text{ V}$		1.0	1.5	V	
Source-Drain Reverse Recovery Time	t _{rr}	I _F = 47 A, di/dt = 100 A/μs		75	120	ns	


Notes:

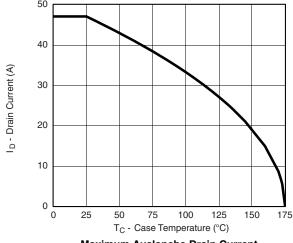
- a. Guaranteed by design, not subject to production testing.
- b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.
- c. Independent of operating temperature.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

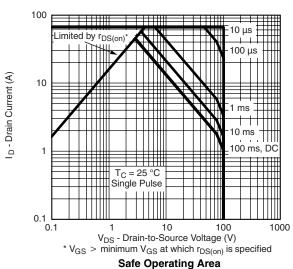

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

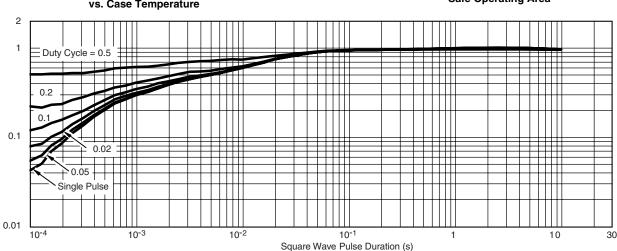

Vishay Siliconix

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted



On-Resistance vs. Junction Temperature




Source-Drain Diode Forward Voltage

THERMAL RATINGS

Maximum Avalanche Drain Current vs. Case Temperature

Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?72827.

Normalized Effective Transient Thermal Impedance

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com